A Comprehensive Review of Neural Network-Enhanced Adaptive Echo Cancellation Systems

¹Preeti Manker, ²Dr. Poonam Sinha, ³ Prof. Priyesh Jaiswal M.Tech scholar, Department of Digital Communications, Barkatullah University Institute of Technology, Bhopal

HOD, Department of Digital Communications, Barkatullah University Institute of Technology, Bhopal Assistant Professor, Department of Digital Communications, Barkatullah University Institute of Technology, Bhopal

| Imankarpreeti8@gmail.com

Abstract: The importance of the development of current communication technologies lies in the neural networkaided adaptive echo cancellation systems. This review traces the development of acoustic echo cancellation (AEC) techniques-from adaptive filtering, nonlinear modeling to hybrid systems based on machine learning approaches-and confronts the challenges posed by acoustic echo in hands-free communication systems operating under dynamic conditions with nonlinear distortions, background noise, or low signal-to-echo ratios (SER). The work is aimed to emphasise on the transformative role of deep learning in AEC, ensuring the superiority of neural networks, which are particularly RNNs, CNNs, and hybrid models, because they better assimilate the complex echo paths. It therefore identifies, through a comparative analysis, the strengths and weaknesses of traditional DSP-based methods, advanced nonlinear techniques, and machine learning-driven approaches. In particular, the results of this study underpin low-latency, computationally efficient solutions for real-time applications, whether it is teleconferencing, automotive systems, or even IoT devices. Hybrid frameworks, therefore, are proposed with adaptive filters integrated into neural networks that balance efficiency with robustness in transmitting voice quality over various environments. Further, the paper underscores the need for further innovations driven by continuous research, specially into exploiting hardware accelerators and meta-learning techniques to build scalable adaptive AEC systems. It is a valuable source for both the researcher and the industry man-at the intersection of theoretical insights and practical applications for improving communication systems.

Keywords: Neural network-enhanced AEC, Adaptive filtering, deep learning in echo cancellation, Hybrid echo cancellation models, Real-time communication systems, Acoustic echo challenges

I. INTRODUCTION

With ever-increasing acceptance and the requirement to work from home, teleconferencing systems such as Microsoft Teams, Skype, WebEx, Zoom, etc., have gone ballistic. To make it a delightful and productive experience for the users, quality calls are a must be maintained. The principal contributers to poor speech quality ratings on voice and video calls on account of acoustic echoes in this regard are not any lesser. Although widely used for cancellation of these echoes during calls, performance of DSP-based AEC models degrade when assumptions made in the models are violated, e.g., time-varying acoustic conditions happen fast, signal processing blocks or non-linearities in the processing chain are unknown, or other models, like background noise estimates fail [1].

With full duplex hands-free devices such as mobile telephony and teleconferencing system, acoustic echo can be caused by the coupling of loudspeaker and microphone in the process of communication, and there can be wide ranging acoustic echo. The microphone of these devices which captures signals coming from its own loudspeaker can produce uncomfortable echoes that seriously disturb the normal communication. So an important issue that has to be addressed is the acoustic echo cancellation (AEC). Ideally, AEC can suppress acoustic echoes completely and pass only the near-end speech to the far-end. Nonetheless, one of the biggest challenges in AEC is to enable it to generalize well under situations such as double-talk, background noises, and nonlinear distortion. This paper concentrates on how well an AEC algorithm generalizes at different situations, and particularly at low signal-to-echo ratio (SER) conditions [2].

Adaptive filter is used for cancelling the linear echo introduced by the multi-path or the room impulse response (RIR). It has been proved to give considerable performance with low complexity. The weighting coefficients of the finite impulse filter (FIR) can be adjusted in time for estimating the RIR, then getting the estimated transcript of the

echo signal. However, due to the non-linear components equipped on the devices, such as the loudspeaker with poor linearity, non-linear echo would be introduced. It cannot be cancelled by the adaptive filtering with FIR structure, resulting in residual echo [3]. As is depicted in Fig. 1, the residual echo after adaptive filtering would be decreased to a little scale compared with speech audio in terms of amplitude. It could be considered as a special type of noise. Meanwhile, this noise could have some relations with the far-end reference signal.

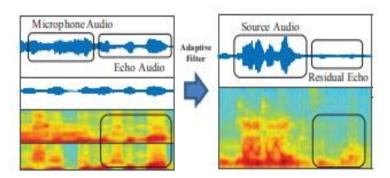


Figure 1: Residual echo after adaptive filtering [4]

II. EVOLUTION OF ECHO CANCELLATION TECHNIQUES

Deep learning has played an important role in AEC studies, demonstrating additional performance improvement compared to more classical methods [5], [6]. A new approach that combines both echo cancellation and noises and reverberations suppression by using long short-term networks has been proposed in [7]. There is a more recent approach that combines deep learning with the classic method in [8], where the latter method has excited convolutional recurrent networks in order to estimate the real and imaginary parts of the near-end signal spectrogram. Echo cancellation has experienced incredible growth from basic analog solutions to advanced techniques of digital signal processing (DSP) and more recently machine learning-based approaches. The solution relied on analog circuits such as hybrid transformers, which proved quite effective in early telephone systems but were not adapted well to dynamic environments. Digital systems gave rise to a subsequent development of DSPbased algorithms such as Least Mean Squares (LMS) and Recursive Least Squares (RLS) methods, enabling realtime adaptive estimation and subtraction of echo from the received signals [9]. Adaptive filters presented such a great breakthrough in the development of echo cancellation. Algorithms such as LMS were widely accepted for their simplicity and computational efficiency, making them practical for real time applications. However, their low convergence speed coupled with sensitivity to non-linearities in echo paths posed some challenges which led to improvements like the Normalized LMS (NLMS) and Affine Projection Algorithms (APA). These offered improved performance under low Signal-to-Noise Ratio (SNR) conditions [10].

With the invention of VoIP and mobile networks, the new challenges arose with non-linear distortions due to loudspeaker-microphone interactions and amplifiers. This called for sophisticated solutions in the form of Volterra series-based and kernel methods in modeling complex nonlinear echo paths. Nonetheless, despite such a tremendous improvement in the abilities of echo cancellation, those solutions are held in lesser application in resource-constrained devices because of high computational requirements [11]. Integration of machine learning, especially neural networks reformed echo cancellation systems. Neural networks are specialized in grasping the complex and nonlinear connection among the variables and dynamic behavior features, which made it fit as a solution for the modern environment of communication. Models like FNNs, RNNs, and CNNs have provided the efficacy of echo suppression over the established techniques. Hybrid systems using conventional adaptive filters combined with neural networks have also been developed; these systems leverage the power of each technique and speed up convergence, improve noise robustness, and enhance adaptability [12].

Despite these, real-time implementations of advanced echo cancellation methods have been challenging in terms of computational efficiency and latency. Modern strategies overcome these with hardware accelerators such as

Graphics Processing Units (GPUs) and FPGAs that provide high-performance and low-latency implementations. Low-power neural network inference further aids the device's placement within mobile and embedded systems. Recent literature highlights the demand for generalized echo cancellators that adapt well to different environments without a heavy penalty in terms of retuning [13]. Transfer learning and meta-learning have been used to decrease the overhead of training and provide the necessary generalization, making next-generation echo cancellation solutions efficient and scalable. Echo cancellation techniques have evolved from an ever-increasing demand towards developing smart and adaptive solutions to the needs of modern communication networks. Table 1 summarizes the evolution of echo cancellation techniques, the analog, DSP-based, nonlinear, and machine learning approaches. It contrasts the core methodologies of all these approaches with their benefits and disadvantages, and mainly emphasizes recent advances toward hardware accelerators and neural networks for tackling modern communication challenges.

Table 1: Comparative Table Summarizing the Evolution of Echo Cancellation Techniques

Aspect	Analog Solutions	DSP-Based Methods	Advanced Nonlinear Techniques	Machine Learning- Based Approaches
Timeframe	Early telecommunication systems	Transition to digital networks	Modern communication systems	Contemporary solutions
Core Methodology	Hybrid transformers	LMS, RLS algorithms	Volterra series, kernel-based methods	Neural networks (FNN, RNN, CNN)
Strengths	Simple, effective for static systems	Adaptability, real- time capability	Handles nonlinearities effectively	Superior performance, dynamic behavior modeling
Limitations	Lacks adaptability in dynamic settings	Limited speed, nonlinearity issues	High computational demand	Computational efficiency and latency challenges
Applications	Early telephony systems	VoIP, basic telecommunication	Loudspeaker- microphone interactions	Real-time, noisy, and nonlinear environments
Recent Advances	N/A	NLMS, APA for better SNR handling	Hardware accelerators (e.g., GPUs)	Transfer learning, meta-learning

III. HYBRID MODELS IN ECHO CANCELLATION

Hybrid models, thus, merge the benefits associated with adaptive filters and those with neural networks so as to bridge the gap between the conventional techniques and modern ones. Systems are designed to compensate for the inadequacies of individual methods by striking on the strong sides of the complementary strengths. The adaptive filters form the first processing layer and are very efficient in handling linear echo paths while substantially reducing the overall computational load. This preprocessing step merely passes on the residual and non-linear artifacts to the refinement through a neural network. Such divisions of labor can highly improve hybrid models by way of robustness and performance; the approach has been very effective in noisy and dynamic environments [14]. For instance, in teleconferencing systems, such hybrid approach may adapt the sudden change in microphone placement, speaker volumes, or background noise to keep audio quality consistent. The predictability of the neural networks and the ability of the traditional filters to adapt make seamless operation possible even in acoustically adverse conditions [15].

However, hybrid models carry many challenges along. In adaptive filtering hybrids with neural networks, the synchronization of both the entities involved must be good. System performance often depends on handling combined resource requirements of both the techniques, which increase the computational complexity. Low latency

would also be important as in any live video conferencing or virtual reality applications; delay could seriously affect the user experience. These challenges require optimized algorithms and hardware acceleration techniques to allow real-time processing while maintaining performance [16]. Figure 2: A multi-layered Audio processing system Figure 2 demonstrates a multi-layered audio processing system. Each layer transforms input raw audio in a linear process, refining it, enhancing robustness, and optimizing performance at each step to produce high-quality audio output.

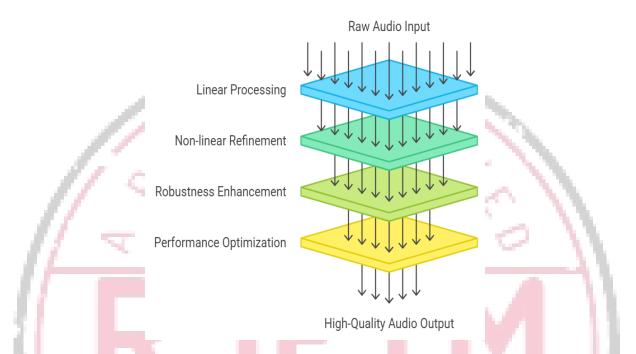


Figure 2: Layered Framework for Neural Network-Enhanced Echo Cancellation: From Raw Audio Input to High-Quality Output

Echo cancellation is one of the most important aspects in ensuring high quality voice transmission over all communication interfaces, including telecommunication networks, VoIP systems, and teleconferencing setups. Even though traditional echo cancellation approaches, such as adaptive filters, have been successful for linear and relatively static echo paths, its applications in the use of dynamic and non-linear echo paths will face significant challenges. This led to the development of hybrid models, which aim to improve the accuracy and robustness in dealing with complex scenarios of echo cancellation by using a combination of several algorithms. Hybrid approaches merge the strengths of traditional adaptive filtering with machine learning techniques, thus offering a highly adaptable solution that might be able to take into account a broader range of characteristics related to echoes [17].

Hybrid models are based on hybridization of adaptive filtering methods, such as Least Mean Squares and Recursive Least Squares with algorithms from machine learning. Adaptive filters "adapt" their parameters to the changing properties of the incoming signal; they model the echo path in linear systems. This approach is highly efficient in stable environments where the characteristics of the echo change slowly [18]. However, in practice, adaptive filters cannot provide satisfactory efficiency when the paths are non-linear or time-variant. Hybrid models that incorporate machine learning models, such as neural networks or SVMs, can handle more complicated dynamic echo paths and thus are of particular effectiveness in systems of high mobility, like teleconferencing, whose conditions are constantly changing [19].

Another feature which hybrid models embody is Voice Activity Detection (VAD). VAD algorithms detect between speech and non-speech periods, thus allowing the system to concentrate effort on the relevant parts of the signal. This process helps in creating a more efficient overall efficiency in echo cancellation by concentrating the processing power of parts of the audio where echoes are more likely to happen [20]. In addition, more sophisticated post-processing techniques such as spectral subtraction or Wiener filtering are commonly utilized as a secondary

process following the primary echo cancellation in order to make the output signal even more refined and free from residual echo that may have persisted. A multilayer approach ensures a higher degree of accuracy in eliminating echoes in complex acoustic environments [21]. To benefit from the diversity and nature of various echo cancellation models, Table 2 represents some of the elements typically used, along with their descriptions and examples. In themselves, these elements combine to complement the effectiveness and efficacy of dynamic echo cancellation.

Component	Description	Examples	
Adaptive Filtering	Uses algorithms to model the echo	LMS, RLS, Kalman Filters	
	path and adjust filter coefficients.		
Machine Learning Models	Models non-linearities and time-	Neural Networks, SVM, Decision	
	varying characteristics of the echo	Trees	
	path.	A 100	
Voice Activity Detection (VAD)	Detects speech and non-speech	Energy-based VAD, Statistical VAD	
11.5	periods to focus on relevant parts of the signal.	14	

Further improves the signal quality

by removing residual echo.

Spectral Subtraction, Wiener Filtering

Table 2: Common Techniques in Hybrid Echo Cancellation Models

IV. PERFORMANCE METRICS OF ECHO CANCELLATION AND APPLICATIONS

Post-Processing

Evaluation of echo cancellation systems involves some objective and subjective metrics by which different aspects of the system's performance are assessed. Some of the most common objective metrics include improvement in SNR, which plays a very important role as an indicator of the system's potential in reducing unwanted background noise and echo in order to improve the clarity of the signal being transmitted. A higher SNR indicates the system's ability to distinguish between the desired signal and the interference due to echo or noise, which is important for having intelligible communication. Another commonly used measure is Echo Return Loss Enhancement, that is an indication of the extent by which the amplitude of the echo signal is reduced. While a higher ERLE means that the echo cancellation system suppresses echoes significantly, it directly speaks to the quality of the audio signal. These are measured together mainly because they complement each other in understanding the performance of echo cancellation algorithms. Besides these primary metrics, latency and computational efficiency become concerns when one is implementing a real-time echo cancellation system. Latency is defined as the time taken by the system to send the signal. In applications such as teleconferencing or voice communications, low latency is crucial to exhibit natural and smooth interactions. High latency introduces awkward delays in the conversation flow, thus ultimately hindering the effectiveness of the system in real-time applications [22, 23]. Indeed, computational efficiency is that ability of the system to cancel the echo without overutilizing the available computational resources to process the limited power available, especially in embedded applications or even on mobile devices. Indeed, an efficient system will be able to process signals in real time without overburdening the computational resources available; this would prevent an overload of the echo cancellation process on the overall system [24].

Echo cancellation technology has become an indispensable element in a wide variety of applications and industries. In the sphere of telecommunications, voice and video calls remain largely dependent on echo cancellation to be of good quality. In hands-free and multiclient settings, echo and noise have the potential to degrade voice communication by a lot; hence, it is essential to cancel the echo well for good audio quality. This technology has also extended its benefits to the automotive systems, especially towards enhancing the quality of communication in cars [25]. Echo cancellation makes voice recognition clearer and audio communication clearer, including in noisy environments such as moving cars. In a new domain of smart devices and Internet of Things, the accuracy of voice commands will depend on echo cancellation. For example, virtual assistants such as Amazon Alexa, Google Nest, and Apple Siri rely on echo cancellation to produce clear and reliable responses in many challenging acoustically-sensitive environments [26].

- **A. Telecommunications**: Echo cancellation plays an important role in using clear voice and video telephone connections, especially in multi-user and handsfree applications. It allows noise-free communications because it reduces echo interference [27].
- **B.** Automotive Systems: The technology of in-car communication systems with voice recognition employs echo cancellation, which avoids noise allowing clearer conversations and voice commands more recognizable in noisy situations, thereby enhancing safety and usability [28].
- C. Smart Devices and IoT: Virtual assistants, such as Amazon Alexa and Google Assistant, are based on echo cancellation to ensure high accuracy of voice commands with consistent results in different acoustic environments [29].
- **D.** Edge AI Solutions in Automotive Systems: In the use of edge AI, echo cancellation also facilitates the processing of real-time communication within the computational limits of in-car hardware by presenting effective and efficient voice control solutions in the automobile [30].

V. CONCLUSION

Over the years, technology in Acoustic Echo Cancellation has improved significantly and adapted itself to the rapidly increasing demand for high-quality communication in a whole range of environments. The problem of acoustic echoes posed to such systems as teleconferencing, Voice over IP, and hands-free devices has elicited developing much more sophisticated solutions. Traditional AEC techniques that relied mainly on adaptive filters, such as Least Mean Squares (LMS) and Recursive Least Squares (RLS), were pivotal in solving linear echo problems. However, the modern communication system complexity, which often involves nonlinear distortions, time-varying conditions, and background noise, has been becoming a challenge in keeping methods of adaptive filtering at par. The other advances include the integration of neural networks, which include CNNs and RNNs, among others, along with hybrid models combining adaptive filters with machine learning techniques, which improve echo cancellation performance. Hybrid models do what each side does best: use adaptive filters when there are linear echo paths and neural networks if there are nonlinearities and dynamic behaviors. The addition enhances robustness in noisy and complex environments, making these models quite effective for real-time applications like teleconferencing and mobile communications. As an evaluation process, the echo cancellation system is often carried out via objective metrics such as improvement in Signal-to-Noise Ratio (SNR) and Echo Return Loss Enhancement (ERLE). Another important aspect of this system is latency and computational efficiency, particularly on mobile devices and embedded systems where resources are usually limited. In real-time communications, low latency is very important to prevent unnecessary interruption of the normal conversation flow. Echo cancellation technologies are widely applied in any industry, from telecommunication to automotive and smart appliance systems. In telecommunication, they ensure clear voice and video call requirements. In automotive systems, they enhance in-car communication and voice recognition. In the IoT sector, echo cancellation will empower accurate voice command recognition across diverse acoustic environments. With the increased demand for seamless communication, the continued development of efficient, adaptable echo cancellation solutions that are computationally feasible remains a vital area of research and promises enhanced user experiences across multiple platforms.

REFERENCES

- [1] Cutler, R., Saabas, A., Pärnamaa, T., Loide, M., Sootla, S., Purin, M., ... & Srinivasan, S. (2021, September). INTERSPEECH 2021 Acoustic Echo Cancellation Challenge. In Interspeech (pp. 4748-4752).
- [2] Zhang, C., & Zhang, X. (2020, October). A Robust and Cascaded Acoustic Echo Cancellation Based on Deep Learning. In INTERSPEECH (pp. 3940-3944).
- [3] Yu, Y., Yang, T., Chen, H., de Lamare, R. C., & Li, Y. (2021). Sparsity-aware SSAF algorithm with individual weighting factors: Performance analysis and improvements in acoustic echo cancellation. Signal Processing, 178, 107806.
- [4] Ma, L., Huang, H., Zhao, P., & Su, T. (2020). Acoustic echo cancellation by combining adaptive digital filter and recurrent neural network. arXiv preprint arXiv:2005.09237.
- [5] Halimeh, M. M., & Kellermann, W. (2020, May). Efficient multichannel nonlinear acoustic echo cancellation based on a cooperative strategy. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 461-465). IEEE.

- [6] Fazel, A., El-Khamy, M., & Lee, J. (2020, May). CAD-AEC: Context-aware deep acoustic echo cancellation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6919-6923). IEEE.
- [7] G. Carbajal, R. Serizel, E. Vincent, and E. Humbert, "Joint DNN-Based Multichannel Reduction of Acoustic Echo, Reverberation and Noise," arXiv:1911.08934, 2019.
- [8] Ma, L., Huang, H., Zhao, P., & Su, T. (2020). Acoustic echo cancellation by combining adaptive digital filter and recurrent neural network. arXiv preprint arXiv:2005.09237.
- [9] Benziane, M., Bouamar, M., & Makdir, M. (2020). Simple and Efficient Double-Talk-Detector for Acoustic Echo Cancellation. Traitement du Signal, 37(4), 585-592.
- [10] Hamidia, M., & Amrouche, A. (2023). A New Fast Double-Talk Detector Based on the Error Variance for Acoustic Echo Cancellation. Traitement du Signal, 40(2).
- [11] Gopalaiah, D. S. K. Design & Development of a Partitioned Block Frequency Domain Based Adaptive Filtering Concept for Noise Cancellation Techniques. EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY, 69.
- [12] Dubey, H., Aazami, A., Gopal, V., Naderi, B., Braun, S., Cutler, R., ... & Aichner, R. (2024). Icassp 2023 deep noise suppression challenge. IEEE Open Journal of Signal Processing.
- [13] Raghuwanshi, J., Mishra, A., & Singh, N. (2020). The wavelet transform-domain adaptive filter for nonlinear acoustic echo cancellation. Multimedia Tools and Applications, 79(35), 25853-25871.
- [14] Zhang, H., Kandadai, S., Rao, H., Kim, M., Pruthi, T., & Kristjansson, T. (2022, May). Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 756-760). IEEE.
- [15] Diana, D. C., & Carline, M. J. (2023). Hybrid metaheuristic method of ABC kernel filtering for nonlinear acoustic echo cancellation. Applied Acoustics, 210, 109443.
- [16] Khan, A. A., Shah, S. M., Raja, M. A. Z., Chaudhary, N. I., He, Y., & Machado, J. T. (2021). Fractional LMS and NLMS algorithms for line echo cancellation. Arabian Journal for Science and Engineering, 1-14.
- [17] Yu, M., Xu, Y., Zhang, C., Zhang, S. X., & Yu, D. (2023, December). Neuralecho: Hybrid of Full-Band and Sub-Band Recurrent Neural Network For Acoustic Echo Cancellation and Speech Enhancement. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (pp. 1-8). IEEE.
- [18] Sankar, S., Kar, A., Burra, S., Swamy, M. N. S., & Mladenovic, V. (2020). Nonlinear acoustic echo cancellation with kernelized adaptive filters. Applied Acoustics, 166, 107329.
- [19] Badaracco, F., Harms, J., Bertolini, A., Bulik, T., Fiori, I., Idzkowski, B., ... & Suchinski, M. (2020). Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo. Classical and Quantum Gravity, 37(19), 195016.
- [20] Zhang, S., Wang, Z., Sun, J., Fu, Y., Tian, B., Fu, Q., & Xie, L. (2022, May). Multi-task deep residual echo suppression with echo-aware loss. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 9127-9131). IEEE.
- [21] Farjadrad, R., Kaviani, K., Nguyen, D., Brown, M., Geelen, G., Bastiaansen, C., ... & Briaire, J. (2021, February). 11.8 An echo-cancelling front-end for 112Gb/s PAM-4 simultaneous bidirectional signaling in 14nm CMOS. In 2021 IEEE International Solid-State Circuits Conference (ISSCC) (Vol. 64, pp. 194-196). IEEE
- [22] Zhou, Y., Yang, J., Wang, H., Huang, G., & Chen, Y. (2020). Statistics-guided dictionary learning for automatic coherent noise suppression. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17.
- [23] Kamarudin, N., Al Haddad, S. A. R., Azhari, R. H., & Basiron, A. (2024). Acoustic Echo Cancellation using Adaptive Filter for Quranic Accent Signals. Journal of Applied Science, Technology and Computing, 1(1), 39-51.
- [24] Braun, S., Gamper, H., Reddy, C. K., & Tashev, I. (2021, June). Towards efficient models for real-time deep noise suppression. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 656-660). IEEE.
- [25] Li, J., & Zhang, M. (2022). Physics and applications of Raman distributed optical fiber sensing. Light: Science & Applications, 11(1), 128.
- [26] Rezaie-Balf, M., Attar, N. F., Mohammadzadeh, A., Murti, M. A., Ahmed, A. N., Fai, C. M., ... & El-Shafie, A. (2020). Physicochemical parameters data assimilation for efficient improvement of water quality index

- prediction: Comparative assessment of a noise suppression hybridization approach. Journal of Cleaner Production, 271, 122576.
- [27] Dobrucki, A., Kin, M., & Walczyński, M. (2022). Quality assessment of speech signals under a process of echo cancelation in telecommunications systems. Vibrations in Physical Systems, 33(1).
- [28] Jiang, Y., Chen, S., Gu, F., Meng, H., & Cao, Y. (2021). A modified feedforward hybrid active noise control system for vehicle. Applied Acoustics, 175, 107816.
- [29] Park, J. S., & Kim, S. H. (2020). Noise Cancellation Based on Voice Activity Detection Using Spectral Variation for Speech Recognition in Smart Home Devices. Intelligent Automation & Soft Computing, 26(1).
- [30] Douch, S., Abid, M. R., Zine-Dine, K., Bouzidi, D., & Benhaddou, D. (2022). Edge computing technology enablers: A systematic lecture study. IEEE Access, 10, 69264-69302.

